
Intel Serv Robotics (2014) 7:67–77
DOI 10.1007/s11370-014-0147-9

SPECIAL ISSUE

Quadruped robot trotting over irregular terrain
assisted by stereo-vision

Stéphane Bazeille · Victor Barasuol · Michele Focchi ·
Ioannis Havoutis · Marco Frigerio · Jonas Buchli ·
Darwin G. Caldwell · Claudio Semini

Received: 10 August 2013 / Accepted: 4 February 2014 / Published online: 7 March 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Legged robots have the potential to navigate
in challenging terrain, and thus to exceed the mobility of
wheeled vehicles. However, their control is more difficult as
legged robots need to deal with foothold computation, leg
trajectories and posture control in order to achieve success-
ful navigation. In this paper, we present a new framework for
the hydraulic quadruped robot HyQ, which performs goal-
oriented navigation on unknown rough terrain using iner-
tial measurement data and stereo-vision. This work uses our
previously presented reactive controller framework with bal-
ancing control and extends it with visual feedback to enable
closed-loop gait adjustment. On one hand, the camera images
are used to keep the robot walking towards a visual target by
correcting its heading angle if the robot deviates from it. On
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the other hand, the stereo camera is used to estimate the size of
the obstacles on the ground plane and thus the terrain rough-
ness. The locomotion controller then adjusts the step height
and the velocity according to the size of the obstacles. This
results in a robust and autonomous goal-oriented navigation
over difficult terrain while subject to disturbances from the
ground irregularities or external forces. Indoor and outdoor
experiments with our quadruped robot show the effectiveness
of this framework.

Keywords Reactive walking · Active impedance ·
Goal-oriented navigation · Visual servoing · Quadruped
robot

1 Introduction

Legged locomotion is a complex task for robots, involving
different components ranging from low-level motor control
to high-level cognitive processes. To be autonomous, robots
need all these components to be reliable, well orchestrated
and capable of real-time execution. The hydraulic quadruped,
HyQ (Fig. 1) is a versatile robot with hydraulic actuation
developed at the Department of Advanced Robotics at the
Istituto Italiano di Tecnologia (IIT) [22]. HyQ is fast, robust,
fully torque controllable, actively compliant and built for
dynamic locomotion.

Our previous work focused on dynamic locomotion,
mainly trotting, using active impedance and low-level feed-
back from the on-board inertial measurement unit (IMU) for
stabilization [3,12,24]. Such low-level control can reliably
negotiate flat and moderately rough terrain (obstacles lower
than 10 cm) while following manually selected high-level
parameters, i.e., velocity, heading, and step height. This pro-
vides a solid foundation for building up a set of higher-level

123



68 Intel Serv Robotics (2014) 7:67–77

Fig. 1 Pictures of IIT’s quadruped robot HyQ. a Without stereo camera
(2012); b with the stereo camera fixed on the protection frame (2012);
c with the stereo camera mounted on a pan and tilt unit (2013). b shows
the definition of the camera coordinate frame.

controllers that deal with the cognitive aspects of locomotion
and navigation, to further increase HyQ’s autonomy. Follow-
ing this theme, we added a stereo-vision system as a first
step towards providing the robot with higher-level feedback,
which can in turn be used in a number of ways, e.g., local-
ization, mapping and path planning.

Visual feedback is crucial in the context of autonomy
in real-world scenarios where open-loop approaches, e.g.,
dead reckoning, quickly accumulate errors due to foot slip-
page, non-uniform weight distribution, terrain irregularities
or external disturbances on the body.

This work is an extension of our previously presented reac-
tive controller framework [3], now extended with the addition
of visual feedback. The vision system sends to the controller
a qualitative localization and information about the terrain
to autonomously and continuously adapt the trotting para-
meters, i.e., heading, forward velocity, step height and duty
factor.

This visual feedback allows to guide the robot towards a
visual goal while traversing challenging terrain in the pres-

ence of external disturbances. Such disturbances can be cre-
ated by lateral pushes on the robot, foot slippage or foot-
object frontal impacts. Also, it allows us to compensate for
possible lateral drift due to inaccurate calibration or transient
loss of balance. Furthermore, it makes the behavior safer by
detecting obstacles, slowing down when necessary, increas-
ing the duty factor or the step height of the trot to overcome
obstacles and in the worst case stopping the robot in front of
an obstacle that cannot be avoided.

1.1 Contribution

A new reactive controller using position, force, inertial mea-
surements and vision data for closed-loop gait adjustment.
The focus of this paper lies on the controller that allows
a highly dynamic quadrupedal robot to perform a fully
autonomous reactive trot in an unknown irregular terrain.

1.2 Contents

The structure of the paper is organized as follows. In Sect. 2,
we present a review of related work on quadruped robot navi-
gation, and in Sect. 3, we provide details about our perception
algorithms. Section 4 describes the locomotion controller
with visual feedback. In Sect. 5, we present our quadruped
robot and the results of indoor and outdoor experiments.
Finally, Sect. 6 discusses the results and Sect. 7 concludes
the paper and mentions future work.

2 Related work

Quadrupedal locomotion has been an active area of robot-
ics research for several decades. However, up to now few
people have worked on the integration of vision sensors on
quadrupedal platforms. Such platforms are commonly used
to develop low-level controllers, rather than high-level cog-
nitive processes.

A number of studies in quadrupedal locomotion often sim-
plify the problem of perception using accurate a-priori given
maps and external robot state sensors. For example the stan-
dard test set up of the DARPA Learning Locomotion Program
used pre-scanned maps and a marker-based tracking system
on LittleDog [15,20].

Kolter et al. in [16] presented a more autonomous
approach by removing the dependence on given maps and
external state input. In their control framework they use a
stereo camera together with a well-established point-cloud
matching technique to iteratively build a map of the environ-
ment that is then used for navigation. While the camera was
on the robot, the vision processing and path planning were
calculated on an external computer.
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Filitchkin and Byl used a monocular camera to perform
terrain classification that in turn influences the locomotion
behavior of their LittleDog quadruped [8].

Chilian and Hirschmuller in [7] performed position esti-
mation and terrain modeling using a stereo camera on their
hexapod robot, while Shao et al. [25] presented an obsta-
cle avoidance approach for their quadruped robot that uses a
stereo-vision-based terrain modeling algorithm.

Howard in [13] introduced a state estimation approach for
BigDog that combines a number of different sensor modal-
ities, including stereo camera, IMU, odometry and GPS to
achieve accurate long-term positioning.

Bajracharya et al. recently showed terrain mapping for
vision-in-the-loop walking on the LS3 robot from Boston
Dynamics [2]. The main contribution is the robustness of
the mapping in difficult terrain (vegetation, slopes) and dif-
ficult lightning condition (day or night). The vision sys-
tem is used to map the environment in the vicinity of the
robot and inform the gait generation process about possible
changes in the surface where the robot is locomoting. As with
other legged robots of Boston Dynamics, very few details on
the controller, hardware, and experimental data have been
scientifically published so far. Therefore, the results of the
experiments shown in online videos are notoriously hard to
scientifically verify and compare.

Research in a similar direction was also performed on the
AIBO quadruped entertainment robot designed and manufac-
tured by Sony. AIBO was the first quadruped robot with an
on-board camera that was able to detect a number of objects
and to track a pink ball while navigating [10].

Our work differs from the literature as we propose a new
reactive controller that closes the loop with vision feed-
back to continuously adjust gait parameters. In other words,
we present an approach without mapping or path planning,
where all the computation is done on-board. Typical meth-
ods for robots maintain a local model of the terrain near
the robot and localize it within that estimated model. Unfor-
tunately, those methods rely on well orchestrated, complex
high-level processes such as SLAM, state estimation and
path planning and require consistency and heavy computa-
tion with real-time processing. On HyQ, it is difficult to real-
ize in terms of robustness and computing speed as the robot
is subject to considerable motions (due to highly dynamic
manoeuvres, impacts, vibrations, slippages) during locomo-
tion. We therefore proposed to give to the robot only per-
ception feedback without mapping to keep the robot’s ability
to react quickly. Our visual process requires small compu-
tational effort, which allows an implementation of all com-
putation on-board. The process sends at 15 Hz a qualitative
localization and information about the terrain to the reactive
controller, which then performs closed-loop gait adjustment.
The stereo-vision system feeds back the position of the target
the robot is approaching and the distance to it. Furthermore,

it extracts and transmits the height of obstacles in front of
the robot and the distance to them. Thus, the visual feed-
back allows the robot to estimate the terrain difficulty ahead
of time and therefore perform gait adjustment in advance,
instead of purely reacting to terrain changes.

3 Environment perception

In our previous work we developed motion control algo-
rithms based on joint positions/velocities and the body state
information given by the IMU. The IMU was the first percep-
tion sensor we added to our quadruped platform to provide
relative information between the robot and the world. How-
ever, the robot’s orientation in the world frame alone is not
enough to create cognitive interaction, information about the
environment itself are needed. To perceive the environment
and to improve the locomotion robustness we therefore added
a stereo camera to the robot. The HyQ stereo camera set up
uses a Bumblebee2 firewire color camera from point grey. It
has a focal length of 2.5 mm, a field of view of 97 degrees,
a maximum resolution of 1,024 × 768 at 20 fps, a 12 cm
baseline, and it is pre-calibrated against distortions and mis-
alignment. On our system, a point cloud with 640 × 480 3D
points with their associated RGB values can be computed
at 15 Hz on a dedicated vision computer equipped with a
quad-core Intel processor at 2.50 GHz running Ubuntu.

Four parameters are extracted from the images and sent
to the motion planner: the position of the target in the image
frame, the distance to this target, and the height of and the
distance to the highest obstacle in front of the robot. The first
two corresponds to a qualitative localization, and the third
and fourth are information about the terrain.

3.1 Target tracking

For the tracking we decided to use the color information with
the Mean Shift algorithm. It was the most intuitive way as we
followed a target for the heading control. It does not neces-
sitate any learning stage or parametrization, and the target
can be any objects selected manually by the operator in the
image before starting the navigation. Our method has been
successfully used indoors and outdoors (natural light) during
short experiments but for more robustness in outdoor settings
and long run navigation it has to be noted that tracking SIFT
features [17] will improve robustness. The method proposed
by Zhou et al. [26] also based on Mean Shift would be well
suited for our purpose and would avoid any color tracking
problems.

We implemented a modified version of the CAMShift
algorithm [6]. Camshift (continuously adaptive mean shift)
combines the basic mean shift algorithm with an adaptive
region-sizing step. A review on Mean Shift methods used for
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tracking can be found in [1]. In this method, the kernel is a
simple step function applied to a color probability map. The
color probability of each pixel is computed using a histogram
back projection. The algorithm creates a confidence map in
the new image based on the color histogram of the object in
the previous image, and uses mean shift to find the peak of a
confidence map near the object’s old position.

Color is represented as Hue from the HSV color model,
a color space that is really more consistent than the stan-
dard RGB color space under illumination changes. Since
Hue is unstable at low saturation, the color histograms do
not include pixels with saturation below a threshold.We use
a successively opening and closing to filter the back projec-
tion image (see Fig. 3e) to remove the outliers and to enhance
the object. The post filtering gives better segmented images
in case of complex video sequences (e.g., changes in illumi-
nation, appearance, scale or object movement). Moreover, as
the body of the quadruped robot trunk is subject to consider-
able movements during locomotion, we increased the search
region for the Mean Shift to make the tracking more robust
under real trotting conditions.

In Fig. 3, we show the detection of a red target indoors.
The tracking was achieved using the left camera with a 15Hz
frame rate. The implemented tracking has been tried on dif-
ferent objects with colors different from the background and
with a minimum size of 10 cm and under different conditions
(indoors, outdoors, artificial or natural light). Practically, we
were remotely selecting in the images an object present in
the scene as goal for the robot. In the experiment shown in
Fig. 2 we were tracking a yellow sign attached to the crane
in front of the robot, and in Figs. 13 and 14 we tracked a red
toolbox in outdoor conditions.

3.2 Depth map and height map from stereo images

We get images from a stereo camera to obtain two differ-
ent views of the scene. By matching the images, the relative
depth information can be obtained as a disparity map, which
is inversely proportional to the differences in distance to the
objects. The disparity map refers to the difference in x coor-
dinates of similar features within two stereo-rectified images.
The reader can refer to Hartley and Zisserman book for more
details on getting depth from stereo-vision [11].

As this camera is accurately pre-calibrated against distor-
tions and misalignment (the stereo pair are aligned within
0.11 pixel RMS error), high-quality rectified images are
extracted using Point Grey proprietary library Triclops. That
results in accurate correspondence computation between the
two stereo images. The computation of the correspondences
is achieved using the SAD method [18] on edge images. It
allows the matching on the changes in brightness rather than
the absolute values of the pixels in the images which is more
robust in environment where the lighting conditions change.

Fig. 2 a Right image and colored disparity image; b associated point
cloud (about 100,000 points) with the camera reference frame: x in red,
y in green and z in blue (color figure online)

A good precision is obtained on the disparity map as we use
sub-pixel interpolation and a size of the matching mask set to
21 × 21. When the disparity map is processed we use surface
validation [19] to remove outliers. Also, we apply a 3 × 3
median filtering to fill small holes. An example of the post-
processed disparity map is shown in Fig. 2a. The disparity
is shown with colors (hot and cold color bar) to appreciate
its quality. It has to be noted that the quality of this disparity
is important for the depth image computation. Outliers and
missing values are low as shown in Fig. 2a. Then for each
valid disparity pixel we can estimate the corresponding 3D
position.

The depth of all those point gives the depth map (Fig. 3c)
and the height to which we subtract the robot height computed
from the legs position gives the height map (Fig. 4).

3.3 Controller input

The vision system provides visual data with a frame rate of
15 Hz to the robot controller. The visual data packet contains
the 3D position vector of the tracked object and the height of
and the distance to the highest obstacle in front of the robot.

The 3D position vector of the tracked object is composed
of the x and y positions of the barycenter of the ellipse in
the camera frame and the distance to the target. The distance
to the target is computed by extracting all the pixels of the
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Fig. 3 a, b Left and right rectified images used to compute the depth
map; c depth map showing the tracked colored object with a red oval
in the center of the image; d example of color detection of a red box.
This object is tracked continuously and its 3D position (expressed in
meters in the camera frame defined in Fig. 1b) is displayed in blue in
the top of the image; d back projection image before post-processing
(color figure online)

Fig. 4 Example of height map in the robot frame. Darks colors mean 0
height and white colors stands for the robot’s height. a Without obstacles
(corresponding to the stereo pair Fig. 3a, b); b with rocks and c with
an obstacle that we cannot cross. The white and red dots in the map
represent the highest points. The computed height were respectively
0.70, 0.63, 0.20 m (y axis). The grey line represents the 1.5 m distance
limit (z axis) from the robot as shown in Fig. 5 (color figure online)

depth map which belong to the ellipse and looking for the
median value.

The height of the highest obstacle and its distance to the
robot are computed by identifying the highest point in a given
area in the depth map. This area is defined as 2 × 0.5 m
at 1 m in front of the robot see Fig. 5). Figure 4 shows an
example of height map. The maximum height is computed as
the distance between the top of the obstacle from a horizontal
plane spanned by the center points of the foot trajectories
(cfg. Sect. 4). The accuracy of the obstacle height is about
±2 and ±5 cm for the distance. In the case the obstacle can
be crossed (this is determined by the maximum retraction
capability of the robot leg, in our case 25 cm), the step height
is modified accordingly.

All these values are expressed in the camera reference
frame and are translated into the robot base frame (via an
appropriate homogeneous transform) and are temporally fil-
tered before being sent to the robot controller to smooth the
robot behavior and filter small oscillations or outliers. It has
to be noted that the values of the height after being filtered are
processed through the variable delay digital buffer detailed
in the next section.
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Fig. 5 Definition of HyQ reference frames. The height map area is
shown in light red color. The red dot indicates the highest obstacle,
while the blue dot represent the center of the area. The distance Px
from the robot and this point in the horizontal direction is Px = 1.25m
(color figure online)

Special cases In case of tracking problem, i.e., tracking
lost for example, special values are sent and the robot stop.
The robustness of this computation is discussed further in
Sect. 6.

In case the obstacle can be crossed because its height is
higher than maximum leg lift, the robot stops in place. It is
worth mentioning that this robot could possibly overcome
bigger obstacles if a different locomotion strategy is con-
sidered (e.g., jumping or climbing), but we consider only a
trotting gait in this study.

3.4 Obstacle buffer

When the computed maximum height of the obstacle and its
distance to the robot are sent to the locomotion controller,
it has to modify the leg lift accordingly to make the robot
able to overcome it. However, when the robot approaches the
obstacle, this goes out of the vision field of the camera and
the estimation of the distance from visual information alone
becomes impossible. Therefore, the robot keeps a “memory”
of the height map which is stored in a buffer. In particular a
delay is introduced in order to modify the step height at the
moment in which the robot is approaching a certain obstacle.
This delay between detection and application of the height
modification is dependent on the forward velocity V f of the
robot which is estimated using the leg odometry.

A variable delay digital buffer is implemented to take this
fact into account (see Fig. 6). As soon the height data (h(t))
is coming from the vision (for our experiments at a 15 Hz
rate) it is stored in a buffer (Fig. 7). An appropriate satura-
tion function limits the values of h(t) to avoid commanding
motions to the feet which are out of the workspace. The first
element of the buffer is the actual sample coming from the
vision with no delay. The size of the buffer Nbuf is computed

Fig. 6 Schematic of the variable delay buffer approach. The modifi-
cation of the step height is delayed depending on the distance and the
robot speed V f

Fig. 7 Schematic of the indexing of the buffer. Indexes can move for-
ward or backward according to the robot speed V f

Fig. 8 A sketch of how the recorded height history (upper plot) is
shifted in time before being applied to front (middle plot) and hind legs
(lower plot)

from the vision rate Fs = 15 Hz and the minimum forward
velocity V fmin = 0.1 m/s. As soon as the index of the buffer
increases we find the maximum height values that have been
stored in the past. The idea is to apply to the front legs the step
height which was stored DF seconds before. DF is the time
interval (delay) in which the robot covers the horizontal dis-
tance Px = 1.25 m from the camera to the center of the height
map area while trotting at velocity V f (Fig. 5). This value
is changed in real time if V f is changing (e.g., if the robot
slows down the DF will increase). The delay DH applied
to the hind legs is higher to account for the fact that these
legs are located further (by an additional distance of dF H )
from the obstacle compared to the front legs, according to
the robot’s direction of motion (see Fig. 8).
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DF = Px

V f + δ
, DH = Px + dF H

V f + δ
(1)

where δ is a small constant to prevent division by zero
issues. After the variable delays Di are computed (at each
control cycle), the indexes Ii associated to them are obtained
as follows:

Ii = floor(Fs Di ) i = F, H (2)

Then the values of the modifications to the step heights hF

and hH for the front and hind legs, respectively, are extracted
from the buffer (see Fig. 7) to be added to the nominal step
height. A first-order digital filter is implemented to smooth
the step-wise discontinuities in hi (t) signals since the vision
rate (15 Hz) is lower than the control rate (1 kHz).

The velocity can also be changed according to the diffi-
culty of the obstacle. For instance, when facing higher obsta-
cles the robot slows down and it speeds up when crossing
lower obstacles. It is important to note that, to have a proper
estimate of the distance covered by the robot, it is preferable
to keep the velocity constant while overcoming the obstacle.

The proposed feature increases robustness and allows the
robot to successfully trot over obstacles. When an obstacle
above a certain threshold is detected, the robot’s commanded
forward velocity is set to 0. Mapping and path/foothold plan-
ning approaches can be used to overcome such difficulties.
The implementations of those more sophisticated obstacle
avoidance/climbing strategies are part of future work.

4 Locomotion control and vision

We showed in the previous part that the visual system can
send to the reactive controller framework (RCF) [3] a quali-
tative localization and information about the terrain to adapt
autonomously and continuously the trotting parameters. It
this part we will explain how the RCF is using the visual feed-
back to perform closed-loop gait adjustment. The structure
of the RCF consists of two main blocks, named motion gen-
eration and motion control blocks (see lower part of Fig. 9),
that work in harmony to provide suitable feet trajectory and
to control the trunk motion and posture.

The robot locomotion is obtained using a motion gener-
ation algorithm based on central pattern generators (CPG),
which are neural networks responsible for generating gait
patterns [14]. Our CPGs are emulated by four non-linear
oscillators, synchronized according to the desired gait, which
provide outputs as position references for each foot. Each
oscillator has parameters directly associated to the step height
Hs , step length Ls , step frequency fs , forward velocity V f

and duty factor D f , which we consider as locomotion para-
meters that can be modified independently. This modulation

Fig. 9 Coupling between the vision process information and the reac-
tive controller framework (RCF). The vision block, in blue, provides
spatial information to the motion generation and motion control blocks
(color figure online)

Swing phase
behavior

Stance phase
behavior

Swing phase
behavior

CPG Oscillator - primitive Filtered trajectory

ws

Fig. 10 The foot trajectory generated by the CPG oscillator (on the
left) and the trajectory modulated by the non-linear filter (on the right),
expressed in the robot’s base frame. z p and x p are the reference coor-
dinates of the primitive’s trajectory, while z f and x f are the filtered
references sent to the joint controller. The primitive has variable angu-
lar frequency ws modulated according to fs and D f . ztd is the filter
parameter which determines where the original elliptic trajectory has
to be interrupted

allows to govern the robot using these parameters as control
inputs that can be adjusted according to terrain irregularities,
obstacle heights and target tracking errors.

The oscillator’s output is a primitive that has an ellipti-
cal shape determined by the step length and step height, as
depicted in Fig. 10 on the left. The primitive is modulated by
a non-linear filter according to a relative distance named step
depth ztd ∈ [−Hs, Hs] that is acquired at the foot touchdown
(Fig. 10, right). The non-linear filter modulation increases the
locomotion robustness by adapting the primitive to irregular
surfaces.

During the stance phase of the legs, the non-linear filters
impose feet references to achieve robot omnidirectional loco-
motion with motion constraint satisfaction. These references
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are relative motions between the feet and the torso computed
according to the desired linear and angular velocities for the
torso. In this paper, the robot locomotion is determined by
means of the desired forward velocity V f and a desired angu-
lar yaw velocity ψ̇d for the torso.

The robot balance is controlled by the motion control
block that is composed mainly of a push recovery and a trunk
controller algorithm. The push recovery algorithm computes
suitable footholds that drive the robot naturally to the default
posture after an external disturbance. The trunk controller
algorithm computes the joint torque references of the stance
legs, to obtain a desired force and moment acting on the trunk.

In principle, the RCF is an approach designed to improve
the locomotion robustness on irregular and unknown terrains.
In this paper we fuse vision processing information with the
RCF to make decisions and provide a spatial reference to the
robot. The coupling between the RCF and the vision process-
ing algorithm is depicted in Fig. 9.

The vision process sends information to two main algo-
rithms: the CPG and the trunk controller. As in the CPG
algorithm each locomotion parameter can be independently
modulated, we introduce the idea of considering each loco-
motion parameter as a control input and use the vision infor-
mation to generate control actions to modulate them, e.g.:

– Step height: directly proportional to the obstacles’ height,
– Forward velocity: inversely proportional to the “degree of

terrain irregularity” or directly proportional to the distance
error to the tracked target,

– Robot turning: directly proportional to the angular error
to the tracked target,

– Duty factor: directly proportional to the “degree of terrain
irregularity”.

The “degree of terrain irregularity” has been simply
defined as the variance of the height obstacles values
buffered. The visual data sent to the CPG block are the high-
est obstacle height and its relative distance and robot heading
deviation from the target object. The heading information is
used to control the robot turning and the distance information
is used to control the robot’s forward velocity. We have imple-
mented proportional control actions, described as follows:

ψ̇d = −K pψψh (3)

V f = K pv (P0 − Ptarget) (4)

where ψ̇d and V f are the desired turning velocity and desired
forward velocity, respectively. The vision process provides
the heading angleψh and the target distance Ptarget. The para-
meters K pψ and K pv are controller gains. P0 is the desired
distance from the target.

This visual feedback contributes substantially to the loco-
motion robustness by providing a qualitative localization and

informations about the terrain. Such knowledge allows the
robot to adjust each step height to overcome obstacles. A
suitable step height is crucial to reduce the risk of foot-object
frontal impacts and also important to reduce energy con-
sumption during the leg swing phase.

To be coherent with the RCF concept, the vision process
also sends information to the trunk controller about the
tracked target distance and heading deviation. Both control
laws described in (3) and (4) are considered as references.
Then, the trunk controller computes joint torques to apply
forces and moments according to V f and ψ̇d errors, i.e.:

FV f = K f (V f − ẋ h
b ) (5)

Mψ = Km(ψ̇d − ψ̇) (6)

where FV f and Mψ are, respectively, the force and the
moment applied to the trunk to reduce motion errors. The
actual forward velocity is denoted by ẋ h

b and the actual robot
turning by ψ̇ . The parameters K f and Km are controller
gains.

5 Experiments

Those algorithms have been experimentally tested indoors
and outdoors on our quadruped robot. To demonstrate the
performance and robustness of our system we ran two kinds
of experiments that are explained after a short description of
our research platform.

5.1 Our platform: HyQ robot

The experimental platform used in this study is the quadruped
robot HyQ [21,22], (see Fig. 1). It is a hydraulically actuated
machine that weighs 85 kg, is 1 m long and has upper and
lower leg segment lengths of 0.35 m. The robot’s legs have
three degrees of freedom each, two hydraulic joints in the
sagittal plane (hip and knee flexion/extension) and another
for hip abduction/adduction. Each joint has 120◦ range of
motion and is controllable in torque and position. The max-
imum joint torque is 145 Nm for the hydraulic. Semini et al.
[22] describe HyQ’s design and specifications in detail.

Since 2011, HyQ has demonstrated a wide range of static
and dynamic motions such as a crawl gait, walking trot over
flat, inclined and rough terrain (indoors and outdoors), flying
trot, squat jumps, rearing, balancing under disturbances and
step reflexes [3,5,9,22–24].

5.2 Indoor experiments on a treadmill

In the performed indoor experiments the robot is trotting on
a treadmill while tracking a colored target (mounted on the
crane in front of the robot). The robot velocity is modified to
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Fig. 11 Results of indoor experiment. Top actual (blue) and the desired
(red) distance to the object; middle relative heading angle; bottom actual
(blue) and desired (red) forward velocity of the robot (color figure
online)

keep the desired distance even in presence of external distur-
bances. If an external operator changes the treadmill velocity,
the robot adapts its velocity accordingly to keep the desired
distance. At the same time, the control of the heading cor-
rects autonomously any lateral drift in the locomotion direc-
tion and helps to keep the robot in the middle of the treadmill.
This experiment shows the effectiveness of the static tracking
to keep the robot on the treadmill autonomously.

Figure 11 shows the correction of the relative heading
angle and the modification of the robot forward speed accord-
ing to the vision feedback. The top plot displays the actual
(blue) and the desired (red) (1.5 m) distance to the object.
The middle plot shows the actual (blue) and desired (red) rel-
ative heading angle.The bottom plot illustrates the forward
velocity.

As an extension for this experiment it is possible to set a
moving target instead of a static object. In this case the robot
is able for example to follow a “leader” (at a desired distance)
that is walking in front of the robot.

Without the heading and distance control the robot occa-
sionally drifted to one side, for reasons such as unbalanced
weight, inaccuracies in the model, calibration errors or exter-
nal forces. Sometimes it was also turning while moving
over big obstacles placed on the treadmill or when some-
one was pushing it. During those experiments an operator
had to pull the robot back to the center of the treadmill with
slings when it was getting too close to the lateral limits of the
treadmill.

The addition of visual feedback to the controller allows
the robot to keep its position on the moving treadmill
autonomously: when the trot in place is started and the
tracked object is in sight, the system does not need any further
intervention from the user. HyQ keeps the object in sight by
turning right and left and keeping the distance to the object

constant for randomly changing treadmill speeds between 0
and 0.3 m/s.

5.3 Outdoor experiments

Outdoor experiments demonstrate the robot’s capability to
trot towards a target object while overcoming obstacles
placed in its way on a 10 m track, see Figs. 12, 13 and 14.
In this particular case, the vision is used for heading control
(targeting an object lying on the ground at the end of the
track) and for obstacle detection but the distance control was
disabled. In these experiments we want to show how vision
can enhance locomotion by adapting the CPG step height to
different variable delay digital buffer presented in Sect. 3.4.
The experiment was repeated for different situations (flat ter-
rain, flat terrain with pieces of wood, rough terrain with rocks
lower than 10 cm), under different lighting conditions (arti-
ficial light, natural light day/evening), and with unavoidable

Fig. 12 Outdoor experiments. a At 1 m distance to the obstacle with
the default step height: 7 cm. b At 50 cm distance to the obstacle the
step height has been increased to 11 cm. The obstacle height is 4 cm.
Feet in the blue dashed circles are in stance while the red dashed circles
highlight the feet that are swinging (color figure online)

Fig. 13 First outdoor experiment to test the step height modification
and heading control while passing over a step of 7.5 cm
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Fig. 14 Second outdoor experiment to test the step height modification
and heading control on rough terrain. During this experiment the step
height was set to the highest one (20 cm), the obstacle height is around
9.5 cm. Note that the robot was swaying to the left and right during this
experiment, but it was correcting the heading by tracking the red box in
front of it (color figure online)

Fig. 15 Outdoor experiments, step height adaptation. Top detected
maximum obstacle height; bottom controlled step height for the front
(red) and hind (blue) legs (color figure online)

obstacles (big rocks, people crossing). The controller was in
this case modifying the direction and the step height accord-
ing to the obstacles detected in front of it.

Figures 15 and 16 show, respectively, the step height mod-
ification according to the obstacles detected and the heading
control without distance control. Figure 12 shows the obsta-
cle used for this experiment, which were pieces of wood
piled up on the track. The average height of the obstacles
was around 10–12 cm. As the obstacles are detected (at 1.5
m from the robot) a delay is introduced (proportional to the
robot velocity) before modifying the step height of the front
legs. This allows to obtain the step height required to over-
come the obstacle only at the moment in which the robot is
passing over it and not earlier, as described in Sect. 3.4.

Fig. 16 Outdoor experiments, heading control. Top distance to the tar-
get; bottom actual (blue) and desired (red) relative heading angle (color
figure online)

6 Discussion

The results of this paper showed the heading control, the dis-
tance control and the step height adjustment. The heading
control and the distance control are robust since the tracking
works robustly. Despite of noise in the signals sent by the
vision process, the robot behavior is smooth. In the rare case
that the tracker is lost (e.g., during fast motions or occlu-
sions), the robot stops at its current position and a new target
has to be selected by the operator. It has to be noted that
the occurrence of a lost tracker can be reduced by fusing the
color information with shape-based processing.

Also, the noise in the obstacle height estimation can lead to
undesired behavior. The robot can sometimes miss the obsta-
cle in front of it, due to an underestimation of the obstacle
height, or stop if the value is overestimated due to noise.

It has to be mentioned that the rough terrain in this
study is achieved by randomly putting obstacles on the flat
ground (pieces of wood, rocks), while the robot is secured
by a harness connected to a rail to prevent damage to the
robot in case it stumbles or falls. The rope that connects
the harness to the rail is hanging loosely while the robot is
trotting.

A first limitation of the approach can come from the fact
that the method has been developed for straight line locomo-
tion and will need modifications to allow curved trajectories.
To solve this, a solution is to mount the camera on a pan and
tilt unit to allow to have a look to the terrain before turning
and overwrite the obstacles height buffer with the new values
obtained.

Another limitation of our approach is that in certain cases
a strong foot-object frontal impact can occur, which prevents
the robot from overcoming the obstacle even if the step height
was sufficient. To solve this, we plan in the future to combine
our method with the step reflex behavior that we have recently
published in [9].
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7 Conclusion and future work

In this paper, we presented a new reactive controller using
position, force, inertial measurements and vision data for
closed-loop gait adjustment. The achieved result is a signifi-
cant step towards rendering HyQ more autonomous. We show
that high-level information from perception sensors is now
available to perform closed-loop gait adjustment. Results
show that without any mapping or planning we achieved
autonomous trotting on rough terrain. The robot is capable
of navigating in a straight line towards a visual goal and
reach it while correcting for drift or compensating for distur-
bances. Furthermore, the earlier presented reactive locomo-
tion framework has been improved, as obstacles can now be
detected and the robot can autonomously slow down and stop
without requiring swift intervention by a human operator.

In future work we aim to extend this work by adding
gait transitions. For example when the terrain becomes very
rough the robot can slow down and locomote with a static
gait instead of trotting. On the vision side, we plan to per-
form state estimation and 3D mapping that can be used for
foothold planning in such very rough terrains.
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